

中华人民共和国国家计量检定规程

JJG 867-1994

光谱测色仪

Spectrocolorimeter

1994-04-06 发布

1994-11-01 实施

光谱测色仪检定规程

Verification Regulation of

JJG 867-1994

Spectrocolorimeter

本检定规程经国家技术监督局于 1994 年 04 月 06 日批准, 并自 1994 年 11 月 01 日起施行。

归口单位: 中国计量科学研究院

起草单位: 中国计量科学研究院

本规程主要起草人:

滕秀金 (中国计量科学研究院)

参加起草人:

曾晓栋 (中国计量科学研究院)

龚晓斌 (中国测试技术研究院)

目 录

_	概记	<u>k</u>	• • • • • •		• • • • • • • • •	• • • • • • • • •			 	 •••••	••••••	(1)
二	技オ	大要求						• • • • • • • • • • • • • • • • • • • •	 • • • • • • •	 •••••		(2)
Ξ	检定	官条件	•••••		· · · · · · · · ·				 • • • • • • •	 •••••		(4)
四	检定	と项目を	11检定	方法				• • • • • • • • • • • • • • • • • • • •	 • • • • • • •	 •••••		(4)
五	检知	医结果的	り处理	和检测	定周期				 	 		(7)
附录	: 1	检定证	书和	检定组	吉果通免	印书格克	式(背 词	面)	 • • • • • • •	 •••••		(8)
附录	2	测色原	理						 •	 •••••		(9)
附录	: 4	参考波	长表	••••					 • • • • • • •	 		(16)

光谱测色仪检定规程

本规程适用于新制造、使用中和修理后的,照明和观测条件为垂直/漫射(符号0/d)的,双光路光谱测色仪的检定。单光路光谱测色仪(0/d)的检定亦可参照执行。

一 概 述

光谱测色仪(以下简称仪器)是以色度学理论为基础,对物体色进行光谱光度测量的仪器。由光源、单色器、测光积分球、探测器及数据处理系统等组成。光源一般为白炽灯、卤钨灯和氘灯(用于紫外光谱段);为减少杂散光,提高光谱纯度,仪器通常采用双单色器;测光积分球的大小可以是任意的,一般多采用直径为 \$ 200 mm 或 \$ 150 mm;探测器大都采用光电倍增管;数据处理系统包括计算机、打印机、绘图仪或数字显示装置。

1 测色标准条件

1.1 反射比标准

色度学规定测量反射物体色的反射比标准,是光谱反射比等于1的各向同性的理想的均匀漫射体,定义为完全反射漫射体(PRD)。用于反射比量值传递和色度测量用的粉体压制氧化镁、硫酸钡、海伦(聚四氟乙烯)等参考标准白板及测色仪器用标准白板、标准色板,其量值应溯源于完全反射漫射体。色度国家基准采用双球法实现反射比的绝对测量,并通过光谱测色仪,用光谱光度法向各级计量部门传递色度量值。

1.2 透射比标准

透射样品的透射比参比标准是与样品相同厚度的空气。

1.3 标准照明体

国家标准 GB 3978 规定颜色测量用标准照明体有 A、C、 D_{65} 等。标准照明体 A,代表全辐射体在绝对温度 2 856 K 时发出的光;标准照明体 C,代表相关色温为 6 774 K 的平均昼光;标准照明体 D_{65} ,代表相关色温为 6 504 K 的时相昼光。

1.4 照明和观测条件

1.4.1 反射色

0/d 照明和观测几何条件的规定是: 一束光线垂直照明样品,该光束的轴线与样品 法线的夹角不应超过 10°, 照明光束应近似平行光,它的任一光线和轴线的夹角不应超过 5°。积分球用来收集反射通量,积分球开孔的总面积不应超过积分球内表面积的 10%。对具有混合反射样品的镜反射成份的影响,可以用光泽吸收器来处理。图 1 为 0/d 照明观测条件(双光路)光路示意图,图中参比白板在测量过程中位置不变。

1.4.2 透射色

0/d 照明和观测几何条件的测色仪,可以测量透射色的规则透射比和全透射比。如

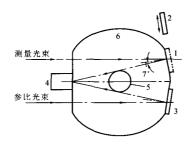


图 1 0/d 照明观测条件 (双光路) 1-标准白板; 2-被测样品; 3-参比白板; 4-光泽吸收器; 5-探测器; 6-测光积分球

果没有特别说明,一般测量都指规则透射比。

- a 规则透射比: 照明和观测条件为垂直/垂直 (符号 0/0)。照明光束与样品表面 法线的夹角不超过 5°。照明和观测光束的任一光线与其轴线间的夹角不超过 5°。样品 的安置应使仪器的探测器仅能接收规则透射通量。
- b 全透射比:包括规则透射和漫透射。照明和观测条件为垂直/漫射(符号 0/d)。 照明光束与样品表面法线的夹角不超过 5°,该光束的任一光线与其轴线间的夹角不超过 5°。用积分球测量半球(2π 空间)的透射通量。

二技术要求

- 2 外观要求
- 2.1 仪器应具有如下标记:仪器名称、型号、编号、制造厂名及出厂日期。
- 2.2 仪器主机的光、机、电各部分应能正常工作,不应有任何影响仪器计量性能及功能的缺陷。
- 3 标准白板
- 3.1 仪器应配备高反射比、漫反射型标准白板和参比白板。可由高纯度氧化镁、硫酸 钡、或海伦等粉体材料制作。
- 3.2 仪器应有配套附件——专用工作标准白板。它们应表面平整、清洁、干燥、均匀, 不透明,无皱纹、裂痕、气泡等缺陷。
- 3.3 标准白板、专用工作标准白板都必须由计量部门标定。
- 4 照明与观测条件 仪器应符合垂直照明、积分球漫射观测的规定,即 0/d 条件。
- 5 波长范围

仪器的工作波长范围为 380 nm 至 780 nm, 至少不得小于 400 nm 至 700 nm。

6 波长总不确定度与重复性

仪器的波长总不确定度与重复性应符合表1要求。

表 1

仪 器 级 别	波长总不确定度/nm	波长重复性/nm
. —	0.4	0.2
=	0.8	. 0.4

7 基线平直度

仪器可见波段的基线平直度应符合表 2 要求。

表 2

仪器级别	0 线和 100%基线平直度/%
_	≤0.2 应同向偏移
=	≪0.4 应同向偏移

8 光谱透射比与光谱反射比的总不确定度与重复性

仪器的光谱透射比与光谱反射比的总不确定度与重复性应符合表3要求。

表 3

仪器级别	光谱是	透射 比	光谱反射比	
1 ()	总不确定度/%	重 复 性/%	总不确定度/%	重 复 性/%
_	0.5	0.2	1.0	0.4
=,	0.8	0.4	1.5	0.8

9 仪器的重复性和稳定性

仪器正常工作条件下,刺激值 Y 的重复性和在 30 \min 内的稳定性应符合表 4 要求。

表 4

仪器级别	重复性Y	稳 定 性 Y
. —	0.2	0.2
=	0.3	0.4

10 色度总不确定度

仪器的色度总不确定度应符合表5要求。

表 5

(V) BR AT FU	色度总	不确定度
仪器级别	$\Delta Y \ (\Delta X, \ \Delta Z)$	Δx , Δy
_	1.0	0.002
=	1.5	0.005

三检定条件

- 11 环境条件
- 11.1 室内温度为 (20±5)℃; 相对湿度应小于 85%。
- 11.2 电源电压为 (220±20) V: 频率为 (50±1) Hz。
- 11.3 仪器工作环境不应有强光直射,室内不应有腐蚀性气体、强烈震动或强电磁场干扰。
- 12 检定器具
- 12.1 低压汞灯、钬玻璃或镨钕玻璃。参考波长见附录 4。
- 12.2 光谱中性系列标准滤光片 3 片,在波长 400~700 nm 的透射比值分别为 20%,
- 40%,70%左右。
- 12.3 光谱中性系列反射标准板 4 块, 其反射比值分别为 90%, 75%, 50%, 25%左右。
- 12.4 无水乙醇、脱脂棉、洗耳球、镊子、计时器。

四 检定项目和检定方法

13 外观检查

用目视法检查仪器外观,应符合第2条要求。

用目视法检查仪器配套附件标准白板、工作标准白板,应符合第3条要求。

14 照明和观测条件检查

用目视法检查仪器的照明观测条件,应符合第4条要求。

- 15 波长总不确定度与重复性检定
- 15.1 用低压汞灯检定

关闭仪器光源,将汞灯放置于单色器入射狭缝处。用仪器单光路能量方式工作。取

最小带宽(如0.1 nm),采用响应快、扫描速度慢的方式,在量程0%~100%范围内进行波长扫描(或参照仪器说明书设定条件)。在360~700 nm 波长范围内单方向重复扫描3次,由仪器识别记录各放射谱线峰值波长;或对每一指定波长进行单峰扫描,逐一记下各放射谱线峰值波长。

波长总不确定度 Δλ 按式 (1) 计算:

$$\Delta \lambda = \frac{1}{3} \sum_{i=1}^{3} |\lambda_i - \lambda_o| \tag{1}$$

式中: λ_i ——各次波长测量值, nm;

 λ_{o} ——相应波长的标准值, nm。

波长重复性 δ_λ 按式 (2) 计算:

$$\delta_{\lambda} = \max \left| \lambda_i - \frac{1}{3} \sum_{i=1}^{3} \lambda_i \right| \tag{2}$$

15.2 用氘灯检定

使用仪器光源氘灯进行波长检定。取仪器的单光路能量方式工作,关闭仪器光源钨灯 W,打开氘灯 D。测量方法同 15.1 款或参照仪器说明书设定条件。对氘灯谱线 486.02 nm 及 656.10 nm 两个单峰波长进行单方向重复扫描 3 次,测量出二条谱线的峰值波长,再按式(1)和(2)计算波长总不确定度 $\Delta\lambda$ 和波长重复性 δ_λ 。

15.3 用钬玻璃或镨钕玻璃检定

仪器置于起始波长,取合适带宽,将钬(或镨钕)玻璃放于透射样品室内测量光路中,以空气作参比,用最慢扫描速度进行波长扫描。由仪器识别并记录各峰(谷)值波长。至少读出分布合适的3个峰(谷)值波长,并重复测量3次。按式(1)和(2)计算波长总不确定度和重复性。

检定结果应按表1要求判定。

16 基线平直度检定

以空气为参比标准,按照仪器说明书,校正仪器 0 线和 100 % 基线。采用常规扫描速度,常用带宽。将仪器置于起始波长位置,进行全波段扫描,记录 0 线和 100 % 基线的最大偏移量,可见波段的基线平直度应符合表 2 要求。

17 光谱透射比总不确定度与重复性检定

采用透射比分别为 20%, 40%和 70%左右的光谱中性玻璃滤光片,分别在波长为 $400~\rm nm$, $500~\rm nm$, $600~\rm nm$, $700~\rm nm$ 处,相对于空气测定各滤光片的透射比,连续测量 3 次。

光谱透射比总不确定度 $\Delta \tau$ 按式 (3) 计算:

$$\Delta \tau = \frac{1}{3} \sum_{i=1}^{3} \left| \tau_i - \tau_o \right| \tag{3}$$

式中: τ_i — 每一滤光片第 i 次透射比测定值;

τ。——每一滤光片在相应波长下的透射比标准值。

光谱透射比重复性 δ, 按式 (4) 计算:

$$\delta_{\rm r} = \max \left| \tau_i - \frac{1}{3} \sum_{i=1}^3 \tau_i \right| \tag{4}$$

检定结果应符合表3要求。

18 仪器的稳定性和重复性检定

18.1 稳定性:对仪器进行预热、校正基线和定标后,在 30 min 内,均匀测量专用工作标准白板 4 次,接 2°视场色匹配函数,C 照明体或 10°视场色匹配函数, D_{65} 照明体, $\Delta\lambda = 10$ nm 计算三刺激值,稳定性 Y 按式(5)计算应符合表 4 要求。

18.2 重复性: 仪器在正常工作条件下,连续测量专用工作标准白板 5 次,测量时白板位置不动。测量结果按 2°视场色匹配函数, C 照明体或 10°视场色匹配函数, D_{65} 照明体, $\Delta\lambda=10$ nm 计算三刺激值,重复性 Y 按式 (5) 计算应符合表 4 要求。

稳定性和重复性的判定式如式(5):

$$\Delta Y = \max \mid Y_i - \overline{Y} \mid \tag{5}$$

式中: \overline{Y} ——各次测量 Y 的平均值;

 Y_i — 第 i 次测量的 Y 值。

19 光谱反射比总不确定度与重复性检定

仪器在正常工作状态下,用高光谱反射比的标准白板(用氧化镁、硫酸钡或海伦等粉体制作白板)对仪器进行定标。然后依次测量反射比约为 90%, 75%, 50% 和 25% 的系列反射标准板,测量波长分别为 400 nm, 500 nm, 600 nm, 700 nm。每板重复测量 4 次。

光谱反射比总不确定度 $\Delta \rho$ 按式 (6) 计算:

$$\Delta \rho = \frac{1}{4} \sum_{i=1}^{4} |\rho_i - \rho_o| \tag{6}$$

式中: ρ_i ——某一波长各次反射比测量值;

 ho_o ——相应波长反射比的标准值。

光谱反射比重复性 δ_{ρ} 按式 (7) 计算:

$$\delta_{\rho} = \max \left| \rho_i - \frac{1}{4} \sum_{i=1}^{4} \rho_i \right| \tag{7}$$

检定结果应符合表3要求。

20 色度总不确定度检定

用 19 条测定的系列反射标准板的光谱反射比值,按 2°视场色匹配函数, C 照明体或 10°视场色匹配函数, D_{45} 照明体, $\Delta\lambda = 10$ nm 计算三刺激值。

色度总不确定度按式(8)计算:

$$\Delta Y = \frac{1}{4} \sum_{i=1}^{4} \left\{ Y_i - Y_o \right\}$$

$$\Delta x = \frac{1}{4} \sum_{i=1}^{4} |x_i - x_o| \tag{8}$$

$$\Delta y = \frac{1}{4} \sum_{i=1}^{4} \left| y_i - y_o \right|$$

式中: Y_i , x_i , y_i ——分别为系列反射标准板第 i 次测量值按 2° 视场色匹配函数, C 照明体(或 10° 视场色匹配函数, D_{65} 照明体), $\Delta\lambda=10\,$ nm 计 算的刺激值和色品坐标;

 Y_0 , x_0 , y_0 ——分别为系列反射标准板相应的刺激值和色品坐标的标准值。

五 检定结果的处理和检定周期

- 21 经检定符合本规程技术要求的仪器,按仪器等级发给检定证书;不符合本规程技术要求的仪器,发给检定结果通知书,并注明不合格项目。
- 22 仪器的检定周期为 2 年。仪器如经搬动、修理或发现测量结果可疑时,应及时重新 检定。

附录 1

检定证书和检定结果通知书格式 (背面)

	检 定 结 果						
项 目		总不确定度	重复性				
1	波 长/nm						
光	谱透射比/%						
光	谱反射比/%						
色度	ΔΥ						
巴及	Δx , Δy						
仪器。	外 观						
照明-	探测条件						
基线平	直度/%						
稳 定 性							
重复性							
检 定:	意 见						

附录 2

測 色 原 理

颜色是个心理生理物理量。物体颜色不仅与物体表面的反射、透射或吸收特性有关,与照明光源的相对光谱功率分布有关,而且与人眼的色觉特性有关。国际上普遍采用和我国国家标准 GB 3977—1979 所规定的两个标准色度学系统,一个是 CIE 1931 标准色度系统,规定了 CIE 1931 标准色度观察者色匹配函数,又称 2°视场色匹配函数(或称 CIE 1931 光谱三刺激值),适用于 $1\sim 4$ °视场范围,用符号 $\overline{z}(\lambda)$ 、 $\overline{y}(\lambda)$ 和 $\overline{z}(\lambda)$ 表示,以数表和曲线的方式给出,如图 1 所示;另一个是 CIE 1964 补充标准色度系统,规定了 CIE 1964 标准色度观察者(10°视场)色匹配函数,适用于大于 4°的视场范围,用符号 $\overline{z}_{10}(\lambda)$, $\overline{y}_{10}(\lambda)$ 和 $\overline{z}_{10}(\lambda)$ 表示,并以数表和曲线的方式给出(图 1)。

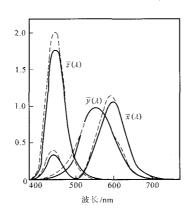


图 1 2°视场色匹配函数(实线) 10°视场色匹配函数(虚线)

根据色度学原理,定量地表示一个颜色,是根据这个颜色所占匹配刺激三原色的份量多少,用三刺激值 X, Y, Z 或 X_{10} , Y_{10} , Z_{10} 以及相应的色品坐标 x, y, z 或 x_{10} , y_{10} , z_{10} 表示。三刺激值的计算方法是样品的光谱反(透)射比、所用标准照明体的相对光谱功率分布和所采用的 2° 或是 10° 视场的色匹配函数,用等波长间隔法,在可见光谱范围内加权计算。计算式为:

$$X = K \sum_{380}^{780} S(\lambda) \rho(\lambda) \bar{x}(\lambda) \Delta \lambda$$

$$Y = K \sum_{380}^{780} S(\lambda) \rho(\lambda) \bar{y}(\lambda) \Delta \lambda$$

$$Z = K \sum_{380}^{780} S(\lambda) \rho(\lambda) \bar{z}(\lambda) \Delta \lambda$$
(1)

和

$$X_{10} = K_{10} \sum_{380}^{780} S(\lambda) \rho(\lambda) \bar{x}_{10}(\lambda) \Delta \lambda$$

$$Y_{10} = K_{10} \sum_{200}^{780} S(\lambda) \rho(\lambda) \bar{y}_{10}(\lambda) \Delta \lambda$$
 (2)

$$Z_{10} = K_{10} \sum_{380}^{780} S(\lambda) \rho(\lambda) \bar{z}_{10}(\lambda) \Delta \lambda$$

式中: $S(\lambda)$ ——标准照明体的相对光谱功率分布;

 $ho(\lambda)$ ——反射色样品的光谱反射比;如果是透射色,则此处为样品的光谱透射比 $au(\lambda)$;

 $\Delta\lambda$ ——计算时的波长间隔,可取 5 nm, 10 nm, 20 nm;

K 和 K_{10} ——调整因数,分别为:

$$K = \frac{100}{\sum_{\lambda} S(\lambda) y(\lambda) \Delta \lambda};$$

$$K_{10} = \frac{100}{\sum_{\lambda} S(\lambda) \bar{y}_{10}(\lambda) \Delta \lambda}$$

色品坐标的计算式如下:

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z} \tag{3}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

和

$$x_{10} = \frac{X_{10}}{X_{10} + Y_{10} + Z_{10}}$$

$$y_{10} = \frac{Y_{10}}{X_{10} + Y_{10} + Z_{10}} \tag{4}$$

$$z_{10} = \frac{Z_{10}}{X_{10} + Y_{10} + Z_{10}} = 1 - x_{10} - y_{10}$$

附录 3

标准照明体和色匹

表 1 CIE 标准照明体和 CIE 1931 标准

(标准照明体 A、C、D65,波

				T
波长		A		
λ/nm	$S(\lambda)\bar{x}(\lambda)$	$S(\lambda)\overline{y}(\lambda)$	$S(\lambda)z(\lambda)$	$S(\lambda)\bar{x}(\lambda)$
380	0.001	0.000	0.006	0.004
390	0.005	0.000	0.023	0.019
400	0.019	0.001	0.093	0.085
410	0.019	0.001	0.340	0.329
420	0.071	0.002	1.256	1,238
430	0.649	0.008	3.168	2.997
440	0.926	0.027	4.647	3.975
110	0.720	0.001	11017	51510
450	1.031	0.117	5.435	3.916
460	1.019	0.210	5.850	3.362
470	0.776	0.362	5.116	2.272
480	0.427	0.621	3.635	1.113
490	0.160	1.039	2.324	0.363
500	0.027	1.792	1.509	0.052
510	0.057	3.080	0.969	0.089
520	0.425	4.771	0.525	0.576
530	1.214	6.322	0.309	1.523
540	2.313	7.600	0.162	2.785
550	3.732	8.568	0.075	4.282
560	5.510	9.222	0.036	5.880
570	7.571	9.457	0.021	7.323
580	9.719	9.228	0.018	8.417
590	11.579	8.541	0.012	8.984
600	12.704	7.547	0.010	8.949
610	12,670	6.356	0.004	8.325
620	11.373	5.072	0.003	7.070
630	8.981	3.705	0.000	5.310
640	6.558	2.562	0.000	3.694
650	4.336	1.637	0.000	2.349
660	2.628	0.972	0.000	1.361
670	1.448	0.530	0.000	0.708
680	0.804	0.330	0.000	0.369
690	0.404	0.146	0.000	0.171
700	0.209	0.075	0.000	0.082
710	0.110	0.040	0.000	0.039
720	0.057	0.019	0.000	_0.019
730	0.028	0.010	0.000	0.008
740	0.014	0.004	0.000	0.004
750	0.006	0.002	0.000	0.002
760	0.004	0.002	0.000	0.001
770	0.002	0.000	0.000	0.001
780	0.000	0.000	0.000	0.000
X, Y, Z	109.828	100.000	35.546	98.046
x, y, z	0.4476	0.407 5	0.144 9	0.310 1

配函数加权系数表

色度观察者色匹配函数的加权系数

长间隔 Δλ = 10 nm)

С			D_{65}	
$S(\lambda)y(\lambda)$	$S(\lambda)\bar{z}(\lambda)$	$S(\lambda)\bar{x}(\lambda)$	$S(\lambda)\bar{y}(\lambda)$	$S(\lambda)\bar{z}(\lambda)$
0.000	0.020	0.007	0.000	0.031
0.000	0.089	0.022	0.001	0.104
0.002	0.404	0.113	0.003	0.532
0.002	0.404	0.112		
0.009	1.570	0.377	0.010	1.795
0.037	5.949	1.188	0.035	5.708
0.122	14.628	2.329	0.095	11.365
0.262	19.938	3.456	0.228	17.335
0.443	20.639	3.722	0.421	19.621
0.694	19.300	3.242	0.669	18.608
1.058	14.972	2.124	0.989	13.994
1.618	9.461	1.049	1.525	8.918
2.358	5.274	0.329	2.142	4.790
3.401	2.864	0.051	3.342	2.814
4.833	1.520	0.095	5.131	1.614
6.462	0.712	0.628	7.040	0.776
7.934	0.388	1.686	8.784	0.430
9.149	0.195	2.869	9.425	0.201
9.832	0.086	4.267	9.797	0.086
			9.415	0.037
9.841	0.039	5.625		
9.147	0.020	6.947	8.678	0.019
7.992	0.016	8.305	7.886	0.015
6.627	0.010	8.613	6.353	0.009
5.316	0.007	9.047	5.374	0.007
4.176	0.002	8.500	4.265	0.003
3.153	0.002	7.090	3.162	0.002
2.190	0.002	5.063	2.088	0.000
1.443	0.000	3.547	1.386	0.000
1.443	0.000	3.347	1.360	0.000
0.886	0.000	2.147	0.810	0.000
0.504	0.000	1.252	0.463	0.000
0.259	0.000	0.681	0.249	0.000
0.134	0.000	0.347	0.126	0.000
0.062	0.000	0.150	0.054	0.000
0.029	0.000	0.077	0.028	0.000
0.014	0.000	0.041	0.015	0.000
0.014	0.000	0.041	0.013	0.000
0.003	0.000	0.009	0.003	0.000
0.002	0.000	0.005	0.001	0.000
0.001	0.000	0.002	0.001	0.000
0.001	0.000	0.001	0.000	0.000
0.000	0.000	0.001	0.000	0.000
0.000	0.000	0.000	0.000	0.000
100.000	118.105	95.020	100.000	108.814
0.316 3	0.373 6	0.312 7	0.329 1	0.358 2
0.310 3	0.373 0	0.312 /	0.3291	0.330 2

表 2 CIE 标准照明体和 CIE 1964 (标准照明体 A、C、D₆₅,

波长		A		
	C(i) = (i)		8(1)= (1)	$S(\lambda)\bar{x}_{10}(\lambda)$
λ/nm	$S(\lambda)\bar{x}_{10}(\lambda)$	$S(\lambda)_{y_{10}}(\lambda)$	$S(\lambda)z_{10}(\lambda)$	
380	0.000	0.000	0.001	0.001
390	0.003	0.000	0.011	0.010
400	0.025	0.003	0.111	0.103
410	0.023	0.003	0.605	0.581
420	0.132	0.040	1.794	1.708
430	0.682	0.084	3.368	3.011
440	0.968	0.157	4.962	3.969
450	1.078	0.260	5.801	3.913
460	1.005	0.426	5.800	3.168
470	0.737	0.698	4.965	2.062
480	0.341	1.075	3.274	0.849
490	0.077	1.607	1.968	0.166
500	0.020	2.424	1.150	0.036
510	0.218	3.523	0.650	0.327
520	0.750	4.854	0.387	0.971
530	1.645	6.087	0.212	1.973
540	2.846	7.267	0.103	3.275
550	4 226	0.000	0.022	4.745
550	4.326 6.198	8.099 8.765	0.033 0.000	6.322
560 570	8.277	9.002	0.000	7.653
580	10.201	8.740	0.000	8.444
590	11.967	8.317	0.000	8.875
370	11.707	0.517	0.000	
600	12.748	7.466	0.000	8.584
610	12.349	6.327	0.000	7.756
620	10.809	5.025	0.000	6.423
630	8.584	3.758	0.000	4.851
640	5.993	2.496	0.000	3.226
650	3.892	1.561	0.000	2.015
660	2.306	0.911	0.000	1.142
670	1.277	0.500	0.000	0.597
680	0.666	0.259	0.000	0.292
690	0.336	0.130	0.000	0.136
700	0.165	0.064	0.000	0.062
700	0.167	0.064	0.000 0.000	0.062 0.028
710	0.083 0.041	0.032 0.015	0.000	0.028
720 730	0.041	0.008	0.000	0.005
740	0.019	0.004	0.000	0.003
''"				
750	0.006	0.002	0.000	0.002
760	0.002	0.000	0.000	0.001
770	0.002	0.000	0.000	0.001
780	0.000	0.000	0.000	0.000
X, Y, Z	111.163	100.000	35.195	97.297
x, y, z	0.451 2	0.405 9	0.142 9	0.310 4

标准色度观察者色匹配函数的加权系数

波长间隔 Δλ = 10 nm)

汲 下问網 Δλ – 10			D			
C		D ₆₅				
$S(\lambda)\bar{y}_{10}(\lambda)$	$S(\lambda)\bar{z}_{10}(\lambda)$	$S(\lambda)\bar{x}_{10}(\lambda)$	$S(\lambda)_{y_{10}}(\lambda)$	$S(\lambda)\bar{z}_{10}(\lambda)$		
0.000	0.002	0.001	0.000	0.003		
0.001	0.043	0.011	0.001	0.049		
0.011	0.463	0.136	0.014	0.613		
0.060	2.672	0.667	0.069	3.066		
0.179	8.122	1.644	0.172	7.820		
0.370	14.866	2.348	0.289	11.589		
0.463	20.350	3.463	0.561	17.754		
0.945	21.059	3.733	0.901	20.088		
1.343	18.292	3.065	1.300	17.697		
1.952	13.887	1.934	1.831	13.025		
2.675	8.144	0.803	2.530	7.703		
3.484	4.268	0.152	3.176	3.889		
4.398	2.085	0.036	4.337	2.056		
5.284	0.975	0.348	5.629	1.039		
6.285	0.501	1.062	6.870	0.548		
7.302	0.254	2.192	8.112	0.283		
8.362	0.119	3.386	8.644	0.123		
8.882	0.036	4.744	8.881	0.036		
8.941	0.000	6.069	8.583	0.000		
8.322	0.000	7.285	7.922	0.000		
7.235	0.000	8.361	7.163	0.000		
6.168	0.000	8.537	5.934	0.000		
5.027	0.000	8.707	5.100	0.000		
3.974	0.000	7.946	4.071	0.000		
2.986	0.000	6.463	3.005	0.000		
2.124	0.000	4.641	2.032	0.000		
1.344	0.000	3.109	1.295	0.000		
0.808	0.000	1.848	0.741	0.000		
0.451	0.000	1.053	0.416	0.000		
0.233	0.000	0.577	0.225	0.000		
0.114	0.000	0.276	0.107	0.000		
0.053	0.000	0.119	0.046	0.000		
0.024	0.000	0.059	0.023	0.000		
0.011	0.000	0.029	0.012	0.000		
0.004	0.000	0.012	0.004	0.000		
0.003	0.000	0.006	0.002	0.000		
0.001	0.000	0.003	0.001	0.000		
0.001	0.000	0.002	0.001	0.000		
0.000	0.000	0.001	0.000	0.000		
0.000	0.000	0.000	0.000	0.000		
0.000	0.000	0.000	0.000	0.000		
100.000	116.138	94.828	100.000	107.381		
0.319 1	0.370 5	0.313 8	0.330 9	0.355 3		

附录 4

参考波长表

表 1 低压汞灯的发射波长

No	波 长/nm	相 对 强 度
1	365.02	25
2	404.66	45
3	435.83	85
4	546.07	50
5	576.96	15
6	690.72	0.5

表 2 氖灯的发射波长

No	1	2	
波 长/nm	486.02	656.10	

表 3 钬玻璃的吸收波长

No	1	2	3	4	5	6
波 长/nm	279.4	360.9	418.7	460.0	536.2	637.5

表 4 镨钕玻璃的吸收波长

,	No	1	2	3	4	5	6
波	长/nm	431.5	473.0	513.6	529.5	685.2	748.3